Beamco logo
HOMEAbout UsPRODUCTSPhoSM 2023
Laser air power beam sampling article
Laser air power beam sampling explained Laser air power beam sampling explained
SPECIFICATIONS
Device feature Feature value Note
Sampling  ratio 10-3 – 10-4  
Wavelengths 0.5 mm – 10.6 mm  
Laser  power > 10 mW at  visible wavelengths
Damage threshold Not applicable  
Beam size < 2”  
Weight 200 g Sampling element only
Size 1” x 2” Sampling element only
Price Custom quotation Includes sampling element and its controller, CCD and profiling software optional.
Lead time 8 – 10 weeks Varies depending on the laser system
LAS-AIR makes possible sampling of high energy/power laser beams through generation of an ultrasound grating in air or in other gaseous propagation medium of the laser beam. Its unique features include:
  • no upper limit to the power of the lasers beam for profiling
  • no distortions introduced into the beam
  • electrically controlled attenuation of the sampled beam to any desired level




LC T [oC] n2 [cm2/W] (a) Einc [J/cm2] (b) Eiso [J/cm2] (c) Dn (d) D [cm2/s] (e) e^ e|| UFr [V]
1005 12.5 N 48.5 I 2.0×10-1 0.073 0.39 0.18 5.3×10-6 3.0 3.4 8.2
1006 15 N 53 I 2.1×10-1 0.074 0.39 0.18 5.2×10-6 3.2 3.6 9.7
1007 17 N 52 I 2.4×10-1 0.077 0.51 0.18 5×10-6 3.2 3.7 9.9
1205 8 N 59 I 2.1×10-1 0.13 0.73 0.21 6.3×10-6 3.2 4.0 9.5
1207 16.5 N 63.5 I 1.9×10-1 0.14 0.82 0.20 6.2×10-6 3.2 3.9 9.8
5721 8 N 70 I 1.2×10-1 0.19 1.35 0.23 3.6×10-6 2.6 3.3 15
8621 SmA 22 N 72 I 1.1×10-1 0.16 1.64 0.20 6.1×10-6 3.0 3.3 19.6
8721 SmA 28 N 72I 1.1×10-1 0.16 1.68 0.21 8.7×10-6 3.1 3.2 22.8
4911 2 N 56 I 1.9×10-1 0.075 0.52 0.18 4.7×10-6 3.3 3.9 20.5
4915 -7 N 57 I 2.1×10-1 0.067 0.47 0.18 4.1×10-6 3.1 3.7 17
4955 4 N 63 I 2.1×10-1 0.13 0.93 0.20 4.4×10-6 3.0 3.7 19.8
4913 3 N 52 I 2.0×10-1 0.076 0.60 0.20 4.2×10-6 3.0 3.6 18
4953 4 N 57 I 2.0×10-1 0.10 0.79 0.21 4×10-6 3.0 3.5 16.3
3178 18 N 41.5 I 1.8×10-1 0.058 0.28 0.14 5.5×10-6 2.4 3.2 8.5
3155 3 N 48 I 2.2×10-1 0.11 0.43 0.20 5.1×10-6 2.6 3.3 7.5
D307 3 N 34 I 3.2 ×10-1 0.016 0.1 0.20        
(a)  l = 532 nm, I = 4.4×10-7 W/cm2, E||n (E: light polarization; n: LC orientation), L = 10 mm; (b)  l = 409 nm, I = 6.2×10-3 W/cm2, L = 10 mm, E||n (L is the thickness of LC layer); (c) l = 409 nm, I = 6.2×10-3 W/cm2, L = 10 mm, E||n; (d) l = 633 nm, T = 23oC; (e)  l = 633 nm, T = 23oC Constant of nonlinear refraction n2: determines the change in the refractive index nn0 of the material under the influence of a light beam of power density I according to the formula nn0 = n2I. Incubation energy Einc: determines the amount of light energy that the LC has to be exposed to in order to start photoinduced mesophase-isotropic phase transition. Transition energy Eiso: determines the amount of light energy that LC has to be exposed to in order for the material to be transformed into isotropic phase. Optical anisotropy Dn: is defined as the difference between the principal values of the refractive indices of LC. Constant of “orientation diffusion D: allows to evaluate the free relaxation time t of LC director reorientation in cells of thickness L with hard anchoring boundary conditions with the aid of the formula t = L2/D. The constant of “orientation diffusion” D is related with the orientational viscosity g and the elastic constant K1 of the liquid crystal by the expression D = p2K1/g. Constants of dielectric susceptibility: e^ and  e|| are the principal values of the dielectric susceptibility of NLC at 1 kHz. Freedericks transition threshold UF: the minimum voltage necessary to apply to the NLC cell in order to induce NLC reorientation.  

References

  1. U. Hrozhyk, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, G. Kedziora, B. Kimball, “High optical nonlinearity of azobenzene liquid crystals for short laser pulses”, Liquid Crystals XII, ed. by I.-C. Khoo, Proc. of SPIE, 7050, 705007 1-11 (2008).
  2. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals”, Adv. Func. Mat. 17, 1735-1742 (2007).
  3. L. De Sio, A. Veltri, C. Umeton, S. Serak, N. Tabiryan “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds”, Appl. Phys. Lett. 93, 181115 (1-3) (2008).
  4. S.V. Serak, N.V. Tabiryan, “Microwatt power optically controlled spatial solitons in azobenzene liquid crystal”, Proc. of SPIE, Liquid Crystals X, ed. I.-C. Khoo, 6332, 63320-Y1-Y13 (2006).
  5. U. Hrozhyk, S. Serak, N. Tabiryan, T.J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. & Liq. Cryst. 454, 235-245 (2006).
  6. S.V. Serak, N.V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photonics Technology Letters, 18 (12), 1287-1289 (2006).
  7. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals”, Opt. Lett., 31, 2248-2250 (2006).
  8. N. Tabiryan, U. Hrozhyk, S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett. 93 (11), 113901-1- 113901-4 (2004).
  9. N.V. Tabiryan, S.V. Serak, V.A. Grozhik, “Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,” Journal of Optical Society of America JOSA B, 20 ( 3), 538-544 (2003)
BEAM Co.,
1300 Lee Road
,
Orlando
,
FL
,
32810
,
USA

Tel. (407) 734-5222
Fax (407) 969-0477
e-mail: sales@beamco.com, info@beamco.com.
http://www.beamco.com/